Evaluating Environmental Impacts

Professor Ian A. Waitz
Massachusetts Institute of Technology
March 19, 2008
The work we present here is preliminary. We expect the results will change as we continue to develop and improve our methods.
The debate is intense and intensifying

“Flying — the worst thing to do … The dirtiest industry in the world.”
B. Sewill, Fly Now, Grieve Later, 2005

“… unrelenting carbon-efficient improvement is business as usual for commercial airlines … We are the greenest form of mass transportation.”
J. C. May, ATA President and CEO, Congressional Testimony, 2007

• Bishop of London says vacation flying is a sin
 http://www.timesonline.co.uk/tol/news/uk/article691423.ece

• EU seeking unilateral inclusion of aviation in emissions trading system

• California and other states petition EPA to regulate greenhouse gas emissions from aviation (December 2007)

• Boeing and Virgin Atlantic B747 demo on alternative fuels (February 2008)
What matters?
To whom does it matter?
Why does it matter?
How do we know?

• Noise?
• Surface air quality?
• Climate change?
• Energy use?
• Movement of goods and people?
Choices exist; how should we choose?

- Every airplane design represents a different balance of noise, performance, emissions
- Every operational procedure represents a different balance of noise, performance, emissions
- Capital costs are high (e.g. $10B for a new airplane program)
- Time-scales are long (20-30 years)
Even simple changes may lead to complex trade-offs

• For example…

• One aspect of airplane operations changed
 – Throttle setting reduced during take-off

• Emissions and noise change
 – CO2 increases
 – NOx decreases
 – SOx increases
 – PM decreases
 – Noise decreases

• Affects aviation economics
How are choices made today?

• ICAO CAEP/6 engine NOx stringency
• Did not include estimate of averted health impacts
• Did not include estimate of impacts of additional fuel/CO2
• Did not include impacts of costs on consumer demand for aviation
• $5-$15 billion decision

Source: ICAO FESG CAEP/6-IP/13; estimates assume high level of manufacturers’ NRC and lost fleet value, discount rate 3%
How will the FAA make decisions in the future?

New Tool Suite (FAA+NASA+Transport Canada)

Policy scenarios
- Certification stringency
- Market-based measures
- Land-use controls
- Sound insulation

Market scenarios
- Demand
- Fuel prices
- Fleet

Environmental scenarios
- CO₂ growth

Technology and operational advances
- CNS/ATM, NGATS
- Long term technology forecasts

Cost-effectiveness
- $/kg NOx reduced
- $/# people removed from 65dB DNL
- $/kg PM reduced
- $/kg CO₂ reduced

Benefit-cost
- Health and welfare impacts
- Change in societal welfare ($)

Distributional analyses
- Who benefits, who pays
- Consumers
- Airports
- Airlines
- Manufacturers
- People impacted by noise and pollution
- Special groups
- Geographical regions

Inputs
- Global, Regional, Airport-local

Outputs
- Focus of presentation
Climate impacts of aviation are complex and occur over varying time-scales (minutes to centuries)

- Climate impacts go beyond the long term effects of CO2
 - Not unique to aviation, true for other sources, but the specific combination of effects is unique to aviation

- NOx emissions lead to increased ozone where aircraft fly, a **warming effect** regionally

- NOx emissions lead to methane removal, a **cooling effect** globally

- Contrails and contrail-induced cirrus produce **warming effect** regionally (where aircraft fly)
 - **Topic of highest scientific uncertainty for aviation climate impacts**

- Other effects (soot, sulfates, water emissions) less significant
 - Except water emissions in stratosphere which can have a strong warming influence
30-year aviation scenario: D surface temperature
A relevant time period for policy and technology, impacts of U.S. ops only

How important is CO₂?
... NOₓ?
... Contrails?

CO₂ impacts shaded in gray

Total impacts
Health impacts of surface air quality

Consistent with US EPA and EU practice, considering effects of ozone and particulate matter (PM)

\[\Delta \text{health costs} = \Delta \text{emissions} \times \frac{\Delta \text{ambient concentration}}{\Delta \text{emission}} \times \frac{\text{health incidence}}{\Delta \text{ambient concentration}} \times \text{cost} \]

- All-sources Emissions
- Local Air Quality Modeling
- Changes in Ambient Concentration
- Concentration – Response Functions
- Change in Health Endpoint Incidence
Aircraft surface air quality health impacts

Very likely less than 0.6% of total health impacts due to poor local air quality in the U.S.

- Changes in annual particulate matter (mg/m³ PM2.5) concentrations due to aircraft SOx, NOx, soot
- Aircraft contribution to PM concentration less than 0.1% on average

Highway vehicle pollution:
~ 25,000 premature mortality incidences/year

Aviation pollution:
~ 64-270 premature mortality incidences/year

22/year
Average U.S. Airline passenger fatalities 2002-2006 (Part 121)
http://www.ntsb.gov/aviation/Table5.htm

45,000/year
U.S. motor vehicle fatalities, 2004
http://www.cdc.gov/nchs/fastats/acc-inj.htm

US Total? >25,000-70,000 mortality incidences/year
US aviation particulate matter health costs

- This graphical equation is a simplification of the more complicated analysis that we perform
Comparing aviation climate damage estimates to other environmental impacts: community noise

- Noise Depreciation Index (NDI) used to correlate noise levels with housing capital depreciation
- Adding additional noise metrics:
 - sleep awakenings
 - % highly annoyed
 - location of schools
Revisiting increased engine certification stringency for NOx
For an illustrative sample case; impacts of U.S. ops only
Revisiting increased engine certification stringency for NOx

For an illustrative sample case; note that results are very sensitive to manufacturing cost and fuel penalty assumptions; impacts of U.S. ops only
Under most assumptions and scenarios climate damage dominates other environmental impacts

30 year scenario, 3.5% discounting, U.S. operations only

These results are for one particular set of assumptions and scenarios: they are not general. However, for most assumptions and scenarios, climate impacts are larger than local air quality and noise impacts.
What’s missing (that may be important)?

- Direct health impacts of noise
- Broader economic impacts of noise (e.g., through delayed airport expansion)
- Impacts on rental units
- Impact of cruise emissions on surface air quality
- Some localized effects very close to airport
- Long-term climate feedbacks, threshold events
- Regionalized impacts

2005 US$ x 10⁹

- Noise
- Air Quality
- Climate
Summary

• FAA has made a commitment to use these tools
 – to inform their decision-making for the ICAO/CAEP meeting in 2010
 – to help establish trades among noise, local air quality and climate impacts to better quantify and manage the impacts associated with US NextGen

• We are still developing and improving these methods
 – they are not accepted for CAEP decision-making

• Our purpose
 – is not to provide “one answer” or a single “best estimate”
 – but to provide a framework that may be used to communicate potential outcomes and uncertainties using a variety of metrics, under a variety of assumptions and scenarios
Final words

• These tools will not make decision-making easier (they may well make it harder)

• However, our goal is to make decision-making better informed (not to make it easier)